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a b s t r a c t

The design and optimization of a coupled multicomponent distillation system is a non-linear and mul-
tivariable problem. The complexity of this kind of problem results in high solving difficulty. This paper
addresses the application of genetic algorithms to the optimization of intensified distillation systems
for quaternary distillations. We used a multiobjective genetic algorithm with restrictions coupled to the
Aspen PlusTM process simulator for the evaluation of the objective function. Several mixtures to test the
effect of relative volatilities of feed mixtures on energy consumption, second law efficiency, total annual
cost and theoretical control properties have been studied. Numerical performance shows that this design
tool is robust and suitable for the design of coupled multicomponent distillation sequences.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Process intensification (PI) is an area presently receiving consid-
erable attention in chemical engineering. Stankiewicz and Moulijn
(2000) and Stankiewicz and Drinkenburg (2004) provide a defi-
nition of PI, comprising novel equipment, processing techniques
and process development methods that, compared to conventional
ones, offer substantial improvements in (bio)chemical manufac-
turing and processing; they also provide an extensive description
of a PI toolbox, ordered along two dimensions: equipment and
processing methods. This goal and others, especially the need to
“maximize mass, energy, space and time efficiencies” and the con-
cept of “output-pulled vs. input-pushed” are intimately related to
a current emphasis on “green chemistry” in chemical technology
(Malone, Huss, & Doherty, 2003). Distillation is responsible for
about 3% of total U.S. energy consumption, more than 90% of all
product recovery and purification separations in the U.S., and more
than 95% of chemical industry consumption worldwide. Data from
the United States Department of Energy indicate that distillation
columns in the U.S. consume 5.07 million TJ per year. To get an idea
of how large this number is, note that the 439 nuclear power plants
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in operation worldwide have a total net installed capacity of 372 GW
(Plesu, Bonet, Plesu, Bozga, & Galan, 2008). Distillation processes
are highly energy-consuming systems, and any small improvement
in distillation can provide huge energy savings.

Thermal coupling has been used in the design of multicom-
ponent distillation systems to significantly reduce both energy
consumption and capital costs over conventional simple column
configurations. The dividing wall column with thermal coupling
was first patented by Wright (1949). Petyluk, Platonov, and
Slavinskii (1965) introduced the thermal coupling for ternary dis-
tillations and presented a fully thermally coupled configuration
(Petlyuk column). There is a considerable amount of literature
analyzing the relative advantages of thermally coupled schemes
for ternary separations (Finn, 1993; Hernández & Jiménez, 1996;
Hernández & Jiménez, 1999; Premkumar & Rangaiah, 2009; Schultz
et al., 2002; Sotudeh & Shahraki, 2008; Tedder & Rudd, 1978;
Triantafyllou & Smith, 1992, among others). Specifically, the ther-
mally coupled dividing wall column (DWC) has been successfully
used in many industrial separations for ternary mixtures (Olujic
et al., 2003). Thermally coupled distillation sequences (TCDS) are
an example of process intensification (Jantes-Jaramillo, Segovia -
Hernández, & Hernández, 2008).

The Petlyuk scheme is equivalent to the dividing wall column.
The DWC offers the possibility of both energy and capital cost sav-
ings. Capital cost savings result from a reduction in quantity of
equipment (i.e., one shell instead of two in the case of the Pet-
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Nomenclature

LF1 liquid phase interlinking flow, kmol h−1

VF1 vapor phase interlinking flow, kmol h−1

Q reboiler heat duty, kW
TAC total annual cost, USD

Greek symbols
� condition number
� second law efficiency
�* Morari resiliency index

lyuk column). There are also indirect benefits: a DWC requires less
plot area, and, therefore, shorter piping and electrical runs. Flare
loads are reduced because of the lower heat input and smaller fire-
case surface, leading to a smaller flare system. Amminudin, Smith,
Thong, and Towler (2001) noted the industrial acceptance and com-
mercialization of DWC by organizations such as BASF AG, M.W.
Kellogg (together with BP, later known as BP Amoco), and Sum-
itomo Heavy Industries Co. together with Kyowa Yuka. Linde AG
constructed the world’s largest DWC for Sasol, an estimated 107
m tall and 5 m in diameter (Schultz et al., 2002). In 2004, Adrian
et al. reported that BASF operates about 30 DWCs worldwide in
their plants. Recently, efforts have focused on finding new ther-
mally coupled configurations based on energy savings as well as
operability.

There has been some work on extensions toward the design of
coupled systems for mixtures of more than three components (e.g.,
Agrawal, 1996; Blancarte-Palacios, Bautista-Valdés, Hernández,
Rico-Ramírez, & Jiménez, 2003; Chrsitiansen, Skogestad, & Lien,
1997; Calzon-McConville, Rosales-Zamora, Segovia-Hernández,
Hernández, & Rico-Ramírez, 2006; Errico, Rong, Tola, & Turunen,
2008; Mascia, Ferrara, Vacca, Tola, & Errico, 2007; Rong &
Kraslawski, 2003; Rong, Kraslawski, & Nystrom, 2000). Optimal
synthesis and design of multicomponent distillation processes are
usually performed in a search space, which excludes the consid-
erations of complex thermally coupled distillation schemes. Rong,
Kraslawski, and Nystrom (2001) have proposed a shortcut design
procedure for the design of multicomponent thermally coupled dis-
tillation columns. In 2006, Rong and Turunen proposed a process
intensification method for systematic synthesis of new distilla-
tion systems with fewer than N-1 columns for an n-component
mixture. The method is illustrated for quaternary distillations.
The authors took advantage of simultaneous thermal coupling
and heat integration as a process intensification strategy for the
systematic synthesis of new intensified distillation systems for mul-
ticomponent separation. This provides opportunities for equipment
integration and intensification. It was practical for a prefractionator
to be incorporated into another column to share a single column
shell. One simple way to accomplish this is through a dividing
wall. It is important to highlight that the synergy of mass and heat
transfers by simultaneous thermal coupling and heat integration
enables equipment integration and intensification. It is equipment
integration and intensification that ultimately produces the new
intensified distillation systems, using a dividing wall, for separation
of multicomponent mixtures. These configurations should result in
savings in both energy and capital costs. Studies must be done on
the new intensified systems relating to design, optimization and
dynamic behavior because there is little literature on the use of
dividing wall columns for multicomponent separations.

The optimal design of coupled systems for separation of mul-
ticomponent mixtures is a non-linear and multivariable problem,
and the objective function used as optimization criterion is gen-
erally non-convex with several local optimums. However, the task

is complicated and is likely to fail to achieve convergence. Recent
years have seen increased development and application of global
optimization strategies in many areas of chemical engineering.
Global optimization methods can be classified as deterministic or
stochastic. The first class offers a guarantee of finding the global
optimum of the objective function, provided that the objective func-
tion is convex. However, strategies in this class often require high
computational time (generally more time than stochastic methods),
and, in some cases, problem reformulation is necessary. The use
of rigorous design and thermodynamic models leads to very large
non-convex models, which are very difficult to converge. More-
over, taking into account structural and design decisions, such as
the existence of stages, columns, condensers and reboilers, leads
to the inclusion of integer variables further increasing the diffi-
culty of solving the model. Finally, additional convergence problems
are generated when discontinue functions, such as complex cost
functions, are introduced in the model. Efforts towards the opti-
mal design of TCDS schemes for separation of ternary mixtures
in the area of deterministic methods are present in the work of
Dünnebier and Pantelides (1999), Yeomans and Grossmann (2000),
and Caballero and Grosmann (2001). For a multicomponent mix-
ture, the problem is clearly more complicated, as the combinatorial
nature of the system results in a set of several structures that are
significantly more complex to solve. There are a significant num-
ber of variables that must be determined in order to develop the
complete design of a multicomponent thermally coupled distil-
lation sequence. Despite the previous work of Rong and Turunen
(2006), where the authors propose a complete set of alternatives
to the separation of four components in DWCs, there is a lack of
rigorous design methodology for this kind of structures. In this
context, stochastic optimization methods are playing an impor-
tant role because they are generally robust numerical tools that
present a reasonable computational effort in the optimization of
multivariable functions, are applicable to unknown structure prob-
lems, require only calculations of the objective function, and can
be used with all models without problem reformulation (The &
Rangaiah, 2003). In the case of stochastic optimization, there are
methods known as genetic algorithms (GA), which are part of the
wider field of evolutive algorithms. These algorithms were first pro-
posed by Holland (1975) to solve optimization problems. Genetic
algorithms are stochastic methods based on the idea of evolution
and survival of the fittest. Genetic algorithms have several features
that make them attractive for solving optimization problems with
modular simulators, where the model of each unit is only avail-
able in an implicit form (black-box model). First, due to the fact
that they are based on a direct search method, it is not necessary to
have explicit information of the mathematical model or its deriva-
tives. Second, the search for the optimal solution is not limited to
one point but rather relies on several points simultaneously, and
therefore the knowledge of initial feasible points is not required and
such points do not influence the final solution. Moreover, a major
advantage of genetic algorithms over other stochastic techniques
is the availability of several multiobjective techniques as VEGA
(Schaffer, 1985), MOGA (Fonseca & Fleming, 1993), NSGA (Srinivas
& Deb, 1995), Niche Pareto GA (Horn & Nafpliotis, 1994), and NSGA-
II (Deb, Agrawal, Pratap, & Meyarivan, 2000). NSGA-II the most
popular multiobjective technique, and it is robust, easy to imple-
ment and very fast. Also for genetic algorithms, there are several
techniques to handle constraints, such as those proposed by Coello-
Coello (2000) and Fujii, Shimoyama, and Oyama (2005). Because
of, genetic algorithms offer appropriate techniques to solve prob-
lems of a multiobjective and constrained nature. Many studies have
applied genetic algorithms to design in chemical engineering (Fraga
& Matias, 1996; Gómez-Castro, Segovia-Hernández, Hernández,
Gutiérrez-Antonio, & Briones-Ramírez, 2008; Gutiérrez-Antonio
& Briones-Ramírez, 2009; Leboreiro & Acevedo, 2004) because
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Fig. 1. Intensified distillation systems for quaternary separations.

genetic algorithms are robust and can handle both MESH equations
and phase equilibrium calculations with complete models, unlike
optimizations made through mathematical programming, in which
simplified models for MESH equations and equilibrium phase cal-
culations are used (Caballero & Grosmann, 2001; Kim, 2001, 2005;
Pistikopoulos & Proios, 2005).

In this paper, we have taken a subset of five intensified config-
urations, for quaternary distillations (Fig. 1), of those reported by

Rong and Turunen (2006). We have studied design and optimization
using a multiobjective genetic algorithm with restrictions cou-
pled to the Aspen PlusTM process simulator (Gutiérrez-Antonio &
Briones-Ramírez, 2009) for the evaluation of the objective function,
ensuring that all results obtained are rigorous. Numerical perfor-
mance of this method has been tested in the design of columns
with several mixtures to examine the effect of the relative volatili-
ties of feed mixtures. The study is complemented by a preliminary
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control property analysis of the structures obtained with the algo-
rithm. In general, numerical performance shows that this method is
robust and suitable for the design of intensified distillation systems
for multicomponent separations.

2. Formulation of the optimization problem

Optimal design of the new intensified distillation systems
implies the determination of 16 variables among continues and
integers, such as total number of stages, location of feed stages,
location of the exits and entrances of interconnection flows, reflux
ratio, product and interconnection flows. The elevated number of
variables along with the enthalpy and phase equilibrium calcula-
tions for quaternary mixtures makes this problem mixed-integer
non-lineal. Optimal design for these sequences means having a
structure with as few as possible stages and as small as possible
heat duty, but satisfying the purities required.

The optimal design problem can be expressed as:

Min(Qi, Nj) = f (R, Nk, Nl, Fk, NF , NS)
subject to
�ym ≥ �xm

(1)

Where R is the reflux ratio, Nk is the stage number of the outlet
interconnection flow k in column j, Nl is the number of stage of
the inlet interconnection flow l in column j, Fk is the value of the
interconnection flow k, NF is the number of stage of the feed stream,
NS is the number of stage of the side stream, �ym and �xm are the
vectors of obtained and required purities for the m components,
respectively.

In order to have optimal designs in sequences DWCS-1 and
DWCS-4, we have to minimize four objectives: total number of
stages in the three columns and the heat duty of the unique reboiler.
Additionally, for sequences DWCS-2, DWCS-3 and DWCS-5 there are
five objectives: total number of stages in the three columns plus the
heat duty of two reboilers. Also, for the five sequences the required
purities for each component must be achieved.

To solve this problem we used the multiobjective genetic
algorithm with constraints developed by Gutiérrez-Antonio and
Briones-Ramírez (2009). Their code manages constraints with a
multiobjective technique, which guides the NSGA-II search (Deb
et al., 2000) using the concept of dominance presented by Coello-
Coello (2000). Since this code is coupled to the Aspen PlusTM

simulator, all optimal designs are obtained considering the calcu-
lation of phase equilibrium along with the complete set of MESH
equations, using the Radfrac module. For more detailed informa-
tion about this algorithm and its link to Aspen PlusTM, the reader
is referred to the original work (Gutiérrez-Antonio & Briones-
Ramírez, 2009). It is worth mentioning that, for the optimization of
distillation sequences, we also try multiobjective differential evo-
lution (Xue, Sanderson, & Graves, 2003), without carrying out a
formal experiment; we have found that, for these kinds of prob-
lems, the NSGA-II (Deb et al., 2000) with management restrictions
(Coello-Coello, 2000) shows better performance.

Thus, the optimization search includes the manipulation of 16
variables to minimize 4 or 5 objectives, subject to 4 constraints;
the number of objectives depends on the sequence that is being
optimized, since every structure is optimized independently. Since
product flows are manipulated, we consider, as additional con-
straints, the recoveries of each component (4) of interest to avoid a
product flow value decrease. Therefore, we have eight constraints
in total.

For all sequences and mixtures, runs were performed with 2000
individuals over 60 generations; these parameters were obtained
previously through a tuning process of the genetic algorithm
to ensure the convergence in a reduced number of generations,
but at the same time avoiding premature convergence. The time

Fig. 2. Block diagram for the genetic algorithm.

employed for the optimization of each sequence is between 8
and 10 h on a Xeon 5410 workstation at 2.33 GHz with 8 GB of
RAM. Of the total computational time required, 95% is consumed
by the simulations performed in Aspen PlusTM, due to the high
number of interconnection flows (6) in these sequences; in other
words, the most time-consuming activity is the evaluation of objec-
tive and constraint functions. As mentioned above, in this study
we employed 2000 individuals and 60 generations; this means
that, in each generation, 2000 individuals – different combina-
tions of design variables for a single structure – are simulated
by Aspen PlusTM. Fig. 2 displays a block diagram for the genetic
algorithm.

3. Case of study

The description of the mixtures and the composition in the
feed used in this paper is given in Table 1; the feed flowrate was
45.36 kmol h−1 as saturated liquid, and the specified purities for
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Table 1
Mixtures analyzed and some properties of components.

Component Feed composition (mol. fraction) Boiling point (K) Compressibility factor Critical temperature (K) Critical pressure (bar)

Mixture M1
n-Pentane (A) 0.15 309.22 0.269 469.70 33.65
n-Hexane (B) 0.35 341.88 0.266 506.40 30.30
n-Heptane (C) 0.15 371.61 0.261 539.20 27.40
n-Octane (D) 0.35 398.83 0.258 568.40 24.90

Mixture M2
2-methyl-butane (A) 0.15 301.0 0.270 433.75 31.99
n-Pentane (B) 0.35 309.22 0.269 469.70 33.65
2-Methyl-pentane (C) 0.15 333.44 0.269 504.33 31.24
n-Hexane (D) 0.35 341.88 0.266 506.40 30.30

Mixture M3
Benzene (A) 0.15 353.27 0.272 562.61 49.24
Toluene (B) 0.35 439.33 0.263 593.94 40.52
Ethylbenzene (C) 0.15 409.33 0.265 619.72 37.23
o-Xylene (D) 0.35 417.55 0.266 632.22 36.54

Mixture M4
Methanol (A) 0.15 337.66 0.228 513.16 79.53
1-Propanol (B) 0.35 355.44 0.249 508.33 47.64
1-Pentanol (C) 0.15 411.13 0.272 307.0 40.12
1-Octanol (D) 0.35 468.4 0.310 658.0 34.0

Table 2
Design variables of DWCS-1, M1 mixture.

Sections 1 and 2 Dividing wall column

Sections 3 and 6 Sections 4 and 7 Section 5 Section 8

Number of stages 27 10 18 10 12
Feed stage 12 – – – –
Side stream stage – 18 – – –
Interlinking stages 27/27 5/10 – – –
Distillate rate, kmol h−1 6.8 – – 15.96 –
Bottom rate, kmol h−1 72.6 – – – 6.64
Feed flowrate, kmol h−1 45.36 – – – –
Reflux ratio 3.65 2.77 2.77 2.77 2.77
Temperature of distillate, ◦C 37.3 – – 70.3 –
Top pressure, atm 1 – – 1 –
Diameter, m 0.52 0.87 0.87 0.87 0.87
Liquid phase interlinking flow (LF1), kmol h−1 72.6 – – – –
Vapor phase interlinking flow (VF1), kmol h−1 – – 34.1 – –

the product streams were assumed to be 98.7, 98, 98 and 98.6
mole percent for A, B, C and D respectively. The design pres-
sure for each separation was chosen to ensure the use of cooling
water in the condensers. Since the feeds M1 and M2 involve a
hydrocarbon mixture, the Chao-Seader correlation was used for
the prediction of thermodynamic properties. This model is usu-
ally recommended for petrochemical plants operating at low or
medium pressure (Aspen Plus Manual, 2007; Errico, Tola, & Mascia,
2009). In the case of M3 and M4, the UNIQUAC model was used for
calculations.

4. Results

The results are shown in two sections; in the first section,
the five thermally coupled distillation sequences are compared
in terms of energy consumption, thermodynamic efficiencies (�;
Seader & Henley, 1998), CO2 emissions (Gadalla, Olujic, Jansens,
Jobson, & Smith, 2005) and total annual costs (Turton, Bailie,
Whiting, & Shaeiwitz, 2004), obtained by using steady state
simulations. The second section presents the theoretical con-
trol properties obtained in the SVD analysis (see Appendix A)

Table 3
Design variables of DWCS-2, M1 mixture.

Sections 1 and 2 Dividing wall column

Sections 3 and 6 Sections 4 and 7 Section 5 Section 8

Number of stages 28 10 4 13 9
Feed stage 12 – – – –
Side stream stage – 16 – –
Interlinking stages 28/28 10/9 – – –
Distillate rate, kmol h−1 68.1 – – 6.7 –
Bottom rate, kmol h−1 6.75 – – – 15.98
Feed flowrate, kmol h−1 45.36 – – – –
Reflux ratio 0.38 18.80 18.80 18.80 18.80
Temperature of distillate, ◦C 85.9 – – 48.7 –
Top pressure, atm 1 – – 1 –
Diameter, m 0.78 0.94 0.94 0.94 0.94
Liquid phase interlinking flow (LF1), kmol h−1 – 29.5 – – –
Vapor phase interlinking flow (VF1), kmol h−1 68.1 – – – –
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Table 4
Design variables of DWCS-3, M1 mixture.

Sections 7 and 8 Dividing wall column

Sections 1 and 4 Sections 2 and 5 Section 3 Section 6

Number of stages 88 7 13 10 16
Feed stage – 8 – – –
Side stream stage – 17 – – –
Interlinking stages 17/18 – – – 16/16
Distillate rate, kmol h−1 15.88 – – 6.8 –
Bottom rate, kmol h−1 6.62 – – – 97.4
Feed flowrate, kmol h−1 – 45.36 – – –
Reflux ratio 0.81 8.4 8.4 8.4 8.4
Temperature of distillate, ◦C 100.6 – – 48.7 –
Top pressure, atm 1 – – 1 –
Diameter, m 1 0.71 0.71 0.71 0.71
Liquid phase interlinking flow (LF1), kmol h−1 – – – – 97.4
Vapor phase interlinking flow (VF1), kmol h−1 74.85 – – – –

Table 5
Design variables of DWCS-4, M1 mixture.

Sections 7 and 8 Dividing wall column

Sections 1 and 4 Sections 2 and 5 Section 3 Section 6

Number of stages 23 11 9 8 17
Feed stage – 10 – – –
Side stream stage – 17 – – –
Interlinking stages 14/19 – – 1/1 –
Distillate rate, kmol h−1 6.69 – – 85.2 –
Bottom rate, kmol h−1 15.9 – – – 6.8
Feed flowrate, kmol h−1 – 45.36 – – –
Reflux ratio 14.51 0.67 0.67 0.67 0.67
Temperature of distillate, ◦C 48.6 – – – –
Top pressure, atm 1 – – 1 –
Diameter, m 0.83 0.8 0.8 0.8 0.8
Liquid phase interlinking flow (LF1), kmol h−1 62.6 – – – –
Vapor phase interlinking flow (VF1), kmol h−1 – – – 85.2 –

Table 6
Design variables of DWCS-5, M1 mixture.

Sections 7 and 8 Dividing wall column

Sections 1 and 4 Sections 2 and 5 Section 3 Section 6

Number of stages 28 14 3 9 15
Feed stage – 15 – – –
Side stream stage – – – – –
Interlinking stages 13/15 11/15 – – –
Distillate rate, kmol h−1 16.04 – – 6.73 –
Bottom rate, kmol h−1 15.95 – – – 6.6
Feed flowrate, kmol h−1 – 45.36 – – –
Reflux ratio 1.65 12.32 12.32 12.32 12.32
Temperature of distillate, ◦C 70.1 – – 37.3 –
Top pressure, atm 1 – – 1 –
Diameter, m 0.7 0.83 0.83 0.83 0.83
Liquid phase interlinking flow (LF1), kmol h−1 – 44.3 – – –
Vapor phase interlinking flow (VF1), kmol h−1 12.25 – – – –

derived from open-loop dynamic simulations in Aspen Dynam-
ics.

4.1. Steady state study

The tray arrangements and some parameters for five sequences,
after the optimization task, for the M1 case of study are given in
Tables 2–6. It can be noted that, for the case M1 (Table 7), the DWCS-
1 sequence has the lowest energy requirement and CO2 emissions,
but the DWCS-4 option presents the minimum total annual cost
and the highest thermodynamic efficiency. This result is in agree-
ment with the fact that the optimum scheme must be selected in
terms of total annual cost, because the same energy requirements
in complex distillation sequences can be translated into different
costs because of their dependence on the temperatures of the inte-

grated distillation sequence reboilers. The worst option in TAC value
is DWCS-3.

In the case of mixture M2 (Table 8), the best option in TAC value
is the DWCS-2 arrangement. However, this sequence does not show

Table 7
Energy consumption, total annual cost, thermodynamic efficiency and CO2 emis-
sions for M1 mixture.

Sequence Q (kW) TAC (USD) � (%) CO2 emissions (kg/h)

DWCS-1 741.3 531,287.1 21.4 180.7
DWCS-2 1006.8 553,691.7 19.6 245.4
DWCS-3 743.4 680,975.9 21.8 181.2
DWCS-4 774.8 499,941.4 22.1 193
DWCS-5 1031.9 579,412.7 17.6 251.5
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Table 8
Energy consumption, total annual cost, thermodynamic efficiency and CO2 emis-
sions for M2 mixture.

Sequence Q (kW) TAC (USD) � (%) CO2 emissions (kg/h)

DWCS-1 2176.4 1,274,254.2 7.9 504.8
DWCS-2 2230.6 1,185,176.7 10.9 489.7
DWCS-3 1887.4 1,354,303.7 11.2 408.1
DWCS-4 1746.7 1,200,221.7 12.9 389.5
DWCS-5 1639.2 1,142,089.4 14.4 359.8

Table 9
Energy consumption, total annual cost, thermodynamic efficiency and CO2 emis-
sions for M3 mixture.

Sequence Q (kW) TAC (USD) � (%) CO2 emissions (kg/h)

DWCS-1 1684.0 1,082,299.2 7.6 442.8
DWCS-2 1898.3 1,073,329.4 7.02 481.1
DWCS-3 2174.8 1,018,590.6 5.8 551.2
DWCS-4 1616.9 1,067,605.1 8.95 409.7
DWCS-5 2376.1 1,219,388.7 6.2 604.9

the best values in energy consumption, CO2 emissions and thermo-
dynamic efficiency. When those parameters are analyzed, the best
option is DWCS-5 (the second best arrangement in TAC value). In
general, for this case, the DWCS-5 option would be the better alter-
native. Once again, the worst option, in total annual cost, is the
DWCS-3 sequence.

Table 9 displays the results for the M3 mixture. The DWCS-3
arrangement shows the minimum value in the TAC calculation,

Table 10
Energy consumption, total annual cost, thermodynamic efficiency and CO2 emis-
sions for M4 mixture.

Sequence Q (kW) TAC (USD) � (%) CO2 emissions (kg/h)

DWCS-1 813.7 589,547.1 22.5 243.4
DWCS-2 854.5 434,830.6 24.5 245.8
DWCS-3 706.5 408,346.1 26.5 201.7
DWCS-4 778.3 436,250.0 27.7 222.2
DWCS-5 1102.4 477,045.8 19.1 314.6

and the second worst values in energy consumption, CO2 emis-
sions and thermodynamic efficiency. When those parameters are
analyzed, the best option is DWCS-4 (the second best arrange-
ment in TAC value). The worst option in all parameters of study is
DWCS-5.

When the M4 mixture is analyzed (Table 10) the best option is
seen to be DWCS-3 in TAC, energy consumption, CO2 emissions and
thermodynamic efficiency values. The worst arrangement in total
annual cost value is DWCS-1, and the DWCS-5 sequence shows the
worst values in energy consumption, CO2 emissions and thermo-
dynamic efficiency.

Preliminary heuristic rules can be suggested for this study: when
the mixture to separate contains hydrocarbon-like compounds, the
best option is presented when component D is purified in a DWC
(DWCS-4 or DWCS-5). When the mixture to be separated contains
aromatic or alcohol compounds, the best option is presented when
component D is purified in a conventional sequence (DWCS-3).

Table 11
Transfer function matrix for DWCS-1, M1 mixture.

Table 12
Transfer function matrix for DWCS-2, M1 mixture.

Table 13
Transfer function matrix for DWCS-3, M1 mixture.
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Table 14
Transfer function matrix for DWCS-4, M1 mixture.

Table 15
Transfer function matrix for DWCS-5, M1 mixture.

4.2. Control properties study

The SVD technique requires a transfer function matrix (see Eq.
(A.1) in Appendix A) around the optimum design of the distillation
sequences. For the distillation sequences presented in this study,
four controlled variables were considered, product composition A,
B, C, D. Similarly, the following manipulated variables were defined:
reflux ratios (Rj), heat duties supplied to reboilers (Qj) and side
stream flowrate (L). In this study, step changes in the input vari-
ables were implemented and open-loop dynamic responses were
registered. The dynamic responses were adjusted to transfer func-
tions and arranged into transfer function matrices. Tables 11–15

present typical transfer function matrices for separation of the M1
mixture.

Figs. 3 and 4 show the Morari resiliency index (�*) and condi-
tion number (�), in the frequency domain, for all sequences (M1
mixture). A clear trend in the parameters is observed for this sepa-
ration task: the worst scheme option in TAC value (DWCS-3) shows
the highest condition number and the lowest Morari resiliency
index at low frequencies. It can be expected that the DWCS-3 option
will present the worst closed-loop dynamic behavior for both set
point tracking and load rejection, as compared to the other distil-
lation sequences studied. In general, DWCS-3 is a poor option for
all parameters studied. For the M1 mixture, the best options for

Fig. 3. Morari resiliency index for M1 mixture.
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Fig. 4. Condition numbers for M1 mixture.

values of TAC, energy consumption, CO2 emissions and thermody-
namic efficiency are the DWCS-1 and DWCS-4 schemes. When they
are analyzed as to control properties, the DWCS-1 scheme shows
the best control properties (the lowest condition number values
and the highest MRI). In the case of DWCS-4, its control property
values (�* and �) are intermediate, between the worse and bet-
ter schemes. As a result, it can be expected that the DWCS-1 and
DWCS-4 sequences will have good closed-loop dynamic behavior.
In general, it can be established that the sequence with better TAC,
energy consumption, CO2 emissions and thermodynamic efficiency
will show good behavior for both set point tracking and load rejec-
tion. Similar results have been obtained for the other cases of study.

5. Conclusions

A design methodology for intensified quaternary distillation
systems (using dividing wall columns) has been presented. This
methodology is based on stochastic optimization techniques,
namely genetic algorithms. Five complex distillation systems have
been analyzed. The design and optimization methodology used has
proven to be an important tool to resolve these kinds of prob-
lems, producing results close to the global optimum and with low
mathematical effort. Because of the complex nature of the studied
arrangements, this rigorous simulation method is absolutely nec-
essary to ensure that the best solution is chosen. Nevertheless, to
make the final decision regarding which system is better, an analysis
of thermodynamic efficiency, CO2 emissions and control properties
should be carried out. Preliminary heuristic rules can be suggested
for this study: when the mixture to separate contains hydrocar-
bon compounds, the best option is presented when component
D is purified in a DWC (DWCS-4 or DWCS-5). When the mixture
to be separated contains aromatic or alcohol compounds, the best
option is presented when component D is purified in a conventional
sequence (DWCS-3). The best options in energy savings, TAC, � and
CO2 emissions values also show, in general, the best control prop-
erties. As a result, good dynamic closed-loop performance can be
expected for these types of intensified distillation sequences simul-
taneously with energy savings, total annual costs, thermodynamic
properties and greenhouse gas emissions parameters.
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Appendix A. Singular value decomposition

One definition of SVD is:

G = V˙WH (A.1)

Here, G is the matrix target for SVD analysis and ˙ is a diago-
nal matrix which consists of the singular values of G. The singular
values of the open-loop frequency function matrix of a process at
a given frequency are the gains of the process at this frequency in
the directions of the corresponding input singular vectors (as the
input singular vectors form a basis in the input space, the gain can
be calculated in every direction). These gains play an important
role when performing controllability analysis of a process, and for
a complex analysis they must be evaluated at various frequencies.
The Morari Resiliency Index (MRI) is the smallest singular value (�*)
of the process open-loop frequency function matrix. The larger its
value, the more controllable the process is. If it is zero, this means
that there is an input direction where the gain is zero and the matrix
is not invertible. Condition number (�) is the ratio of the largest and
smallest singular values of the process open-loop frequency func-
tion matrix. If it is large, then the matrix has strong directionality,
which means that the gains vary strongly depending on input direc-
tions. Such a matrix is said to be ill conditioned. A large � means that
the system is sensitive to input and model uncertainty and there-
fore the process is less controllable. Systems with higher �* values
and lower � are expected to show the best dynamic performance
under feedback control (Gabor & Mizsey, 2008).
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